欢迎关注公众号:pythonic生物人
holoviews是一个超级简洁的python可视化工具,后端为bokeh、matplotlib、datashader库,最擅长干的是一行代码搞定一张图(类似seaborn),如下文的河流图(Sankey);
HoloViews helps you understand your data better, by letting you work seamlessly with both the data and its graphical representation.
欢迎阅读类似文章(列出公众号的部分内容)
Python数据科学篇
- 系统梳理了Python3基础、NumPy、Pandas、Jupyter Notebook、及Anaconda的使用。
Anaconda
利用Anaconda在Windows及Linux下搭建Python环境【手把手版】
Conda|Python包和版本管理利器Jupyter Notebook
玩转Jupyter Notebook5-配置python|R|Julia|Stata
玩转Jupyter Notebook4-【换个皮肤】吧!
玩转Jupyter Notebook3-(“魔法”命令篇)
玩转Jupyter Notebook2-(插件篇:16实用插件)
玩转Jupyter Notebook-(入门篇)Numpy、Pandas
NumPy的过去现在和未来!
python数据分析包|Pandas-04pandas学习资料大放送
python数据分析包|Pandas&NumPy小抄(Cheat_Sheet)
python数据分析包|Pandas-03pandas读写表格数据
python数据分析包|Pandas-02之缺失值(NA)处理
python数据分析包|Pandas-01之DataFrame&Series
python数据分析包|NumPy-02
python数据分析包|NumPy-01Python3基础
python3基础12详解模块和包(库)|构建|使用
python3基础11异常处理|文件读取|文件写入
python3基础10面向“对象”编程
python3基础09列表推导式|迭代器|生成器|匿名函数
python3基础08函数(python内置)
python3基础07函数(自定义)
python3基础06流程控制语句
python3基础05布尔类型和比较运算符
python3基础04字典(dict)和集合(set)
python3基础03列表(list)和元组(tuple)
python3基础02数值和字符串(二)
python3基础01数值和字符串(一)
统计学精进篇
征服统计学06|统计模型、抽样分布是什么?
征服统计学05|总体or估算总体均值、方差、标准差是什么?
征服统计学04|什么是统计学中的总体参数?
征服统计学03|什么是中心极限定理?
征服统计学02|什么是正态分布?
征服统计学01|什么是统计分布?
Python可视化篇
- 系统梳理了Python中Matplotlib、Seaborn、plotnine及pygal几个可视化package的使用;系统梳理了Python中可视化颜色的使用。
Matplotlib、Seaborn
Python可视化44|画个“圣诞树”
Python可视化|Matplotlib40-LaTeX in Matplotlib和python
Python可视化|Matplotlib39-Matplotlib 1.4W+字教程(珍藏版)
Python可视化|Matplotlib38-Matplotlib官方Cheat sheet(上篇)
Python可视化35|matplotlib&seaborn-一些有用的图
Python可视化34|matplotlib-多子图绘制(为所欲为版)
Python可视化33|matplotlib-rcParams及绘图风格(style)设置详解
Python可视化32|matplotlib-断裂坐标轴(broken_axis)|图例(legend)详解
Python可视化31|matplotlib-图添加文本(text)及注释(annotate)
Python可视化30|matplotlib-辅助线(axhline|vlines|axvspa|axhspan)
Python可视化29|matplotlib-饼图(pie)
Python可视化28|matplotlib绘制韦恩图(2-6组数据)
Python可视化27|seaborn绘制线型回归图曲线
Python可视化26|seaborn绘制分面图(seaborn.FacetGrid)
Python可视化25|seaborn绘制矩阵图
Python可视化24|seaborn绘制多变量分布图(jointplot|JointGrid)
Python可视化23|seaborn.distplot单变量分布图(直方图|核密度图)
Python可视化22|Seaborn.catplot(下)-boxenplot|barplot|countplot图
Python可视化21|Seaborn.catplot(上)-小提琴图等四类图
Python可视化20|Seaborn散点图&&折线图
Python可视化19|seborn图形外观设置
Python可视化17seborn-箱图boxplot
Python可视化matplotlib&seborn16-相关性heatmap
Python可视化matplotlib&seborn15-聚类热图clustermap
Python可视化matplotlib&seborn14-热图heatmap
Python可视化|matplotlib13-直方图(histogram)详解
Python可视化|matplotlib12-垂直|水平|堆积条形图详解
Python可视化|matplotlib11-绘制折线图matplotlib.pyplot.plot
Python可视化|matplotlib10-绘制散点图scatter
Python可视化|matplotlib04-绘图风格(plt.style)大全
Python可视化|matplotlib03-一文掌握marker和linestyle使用
python可视化|matplotlib02-matplotlib.pyplot坐标轴|刻度值|刻度|标题设置
python可视化|matplotlib01-绘图方式|图形结构plotnine
Python可视化43|plotnine≈Python版ggplot2
pygal
颜色使用
Python可视化18|seborn-seaborn调色盘(六)
Python|R可视化|09-提取图片颜色绘图(五-颜色使用完结篇)
Python可视化|08-Palettable库中颜色条Colormap(四)
Python可视化|matplotlib07-自带颜色条Colormap(三)
Python可视化|matplotlib06-外部单颜色(二)
Python可视化|matplotlib05-内置单颜色(一)
R可视化篇
系统的梳理了ggplot2的图层图形语法、一些R可视化包
R可视化23|Christmas tree
R可视化22|换妆利器-ggpattern
R可视化21|30个统计图绘制原理+使用场景+code
R可视化20|最基础元素详解(Modern Statistical Graphics)
R可视化19|ggplot2绘制常用30+个靓图(附R code)
R可视化18|ggstatsplot几行code终结SCI级图表统计+画图 (下)
R可视化17|ggstatsplot几行code终结SCI级图表统计+画图 (上)
R可视化16|《ggplot2:数据分析与图形艺术》最新版(第三版)笔记合集
R可视化15|27种常见物种解剖图轻松绘制
R可视化14|ggthemr、gsci、tvthemes助您绘制靓丽美图
R可视化13|ggplot2-图层图形语法 (5)
R可视化12|ggplot2-图层图形语法 (4)
R可视化11|ggplot2-图层图形语法 (3)
R可视化10|ggplot2-图层图形语法 (2)
R可视化09|ggplot2-图层图形语法 (1)
R可视化08|ggplot2图层-标度图层(scale layer)-图例篇
R可视化07|ggplot2图层-标度图层(scale layer)-颜色盘篇
R可视化06|ggplot2图层-标度图层(scale layer)-坐标轴篇
R可视化05|ggplot2图层-注释图层(Annotation layer)
R可视化04|ggplot2图层-统计变换图层(stat layer)
R可视化03|ggplot2图层-几何对象图层(geom layer)
R可视化02|ggplot2-ggplot2快速绘图
R可视化01|ggplot2-ggplot2简介
本文目录
01 - 精彩demo
import pandas as pd
import holoviews as hv
hv.extension('matplotlib')
edges_df = pd.read_csv('fb_edges.csv')
nodes_df = pd.read_csv('fb_nodes.csv')
fb_nodes = hv.Nodes(nodes_df).sort()
fb_graph = hv.Graph((edges_df, fb_nodes), label='Facebook Circles') #绘图
fb_graph.opts(cmap='Set1',
node_color='circle',
fig_size=350,
show_frame=False,
xaxis=None,
yaxis=None,
node_size=10)
edges = pd.read_csv('energy.csv') #导入数据
sankey = hv.Sankey(edges, label='Energy Diagram') #绘图
sankey.opts(label_position='left',
edge_color='target',
node_color='index',
cmap='set1') #图形属性设置
hv.Sankey(edges, label='Energy Diagram') 一行代码搞定小面的河流图~~
# 矩阵图
import holoviews as hv
from holoviews import opts
hv.extension('bokeh')
from bokeh.sampledata.iris import flowers
from holoviews.operation import gridmatrix
ds = hv.Dataset(flowers)
grouped_by_species = ds.groupby('species', container_type=hv.NdOverlay)
grid = gridmatrix(grouped_by_species, diagonal_type=hv.Scatter)#绘图
grid.opts(opts.Scatter(tools=['hover', 'box_select'], bgcolor='#efe8e2', fill_alpha=0.2, size=4))
02 - 快速上手holoviews
holoviews安装
pip install holoviews -i https://pypi.tuna.tsinghua.edu.cn/simple
从scatter开始
import pandas as pd
import numpy as np
import holoviews as hv
from holoviews import opts
hv.extension('bokeh', 'matplotlib') #导入扩展'bokeh','matplotlib'
station_info = pd.read_csv('station_info.csv')
hv.Scatter(station_info, 'services', 'ridership') #轻松绘制散点图
使用“+”添加Layout
# 使用“+”添加Layout
hv.Scatter(station_info, 'services', 'ridership') + \
hv.Histogram(
np.histogram(station_info['opened'], bins=24), kdims=['opened'])+\
hv.Scatter(station_info, 'services', 'ridership')
使用“*”添加Overlay
# 使用“*”添加Overlay
taxi_dropoffs = {
hour: arr
for hour, arr in np.load('hourly_taxi_data.npz').items()
}
bounds = (-74.05, 40.70, -73.90, 40.80)
image = hv.Image(taxi_dropoffs['0'], ['lon', 'lat'], bounds=bounds)
points = hv.Points(station_info, ['lon', 'lat'])
image + image * points
添加交互小部件
# 添加交互小部件
dictionary = {
int(hour): hv.Image(arr, ['lon', 'lat'], bounds=bounds)
for hour, arr in taxi_dropoffs.items()
}
hv.HoloMap(dictionary, kdims='Hour')
使用opts个性化图形设置
# 默认bokeh后端
spike_train = pd.read_csv('spike_train.csv.gz')
curve = hv.Curve(spike_train, 'milliseconds', 'Hertz') # 折线图
spikes = hv.Spikes(spike_train, 'milliseconds', []) # 条形码
layout = curve + spikes #
layout
#opts个性化图形属性设置
layout.opts(
#Options
opts.Curve(height=200,
width=900,
xaxis=None,
line_width=1.50,
color='red',
tools=['hover']),
opts.Spikes(height=150,
width=900,
yaxis=None,
line_width=0.25,
color='grey')).cols(1)
更多精彩
https://github.com/holoviz/holoviews
欢迎扫码关注公众号:pythonic生物人
转载自CSDN-专业IT技术社区
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_21478261/article/details/115425925